Imagen de portada de Amazon
Imagen de Amazon.com

Projection-Based Clustering through Self-Organization and Swarm Intelligence [electronic resource] : Combining Cluster Analysis with the Visualization of High-Dimensional Data / by Michael Christoph Thrun.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2018Edición: 1st ed. 2018Descripción: XX, 201 páginas90 ilustraciones, 29 ilustraciones in color. online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9783658205409
Tema(s): Formatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD:
  • 006.4 23
Recursos en línea:
Contenidos:
Approaches to Unsupervised Machine Learning -- Methods of Visualization of High-Dimensional Data -- Quality Assessments of Visualizations -- Behavior-Based Systems in Data Science -- Databionic Swarm (DBS).
En: Springer Nature eBookResumen: This book is published open access under a CC BY 4.0 license. It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm(DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures.The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining. Contents Approaches to Unsupervised Machine Learning Methods of Visualization of High-Dimensional Data Quality Assessments of Visualizations Behavior-Based Systems in Data Science Databionic Swarm (DBS) Target Groups Lecturers, students as well as non-professional users of data science, statistics, computer science, business mathematics, medicine, biology The Author Michael C. Thrun, Dipl.-Phys., successfully defended his Ph.D. in 2017 at the Philipps University of Marburg. Thrun's advisor was the Chair of Neuroinformatics, Prof. Dr. rer. nat. Alfred G. H. Ultsch.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Approaches to Unsupervised Machine Learning -- Methods of Visualization of High-Dimensional Data -- Quality Assessments of Visualizations -- Behavior-Based Systems in Data Science -- Databionic Swarm (DBS).

Open Access

This book is published open access under a CC BY 4.0 license. It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm(DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures.The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining. Contents Approaches to Unsupervised Machine Learning Methods of Visualization of High-Dimensional Data Quality Assessments of Visualizations Behavior-Based Systems in Data Science Databionic Swarm (DBS) Target Groups Lecturers, students as well as non-professional users of data science, statistics, computer science, business mathematics, medicine, biology The Author Michael C. Thrun, Dipl.-Phys., successfully defended his Ph.D. in 2017 at the Philipps University of Marburg. Thrun's advisor was the Chair of Neuroinformatics, Prof. Dr. rer. nat. Alfred G. H. Ultsch.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha