Imagen de portada de Amazon
Imagen de Amazon.com

Signals and systems using MATLAB / Luis F. Chaparro.

Por: Tipo de material: TextoTextoEditor: Burlington, MA : Academic Press, c2011Descripción: xvi, 752 páginas : ilustraciones ; 25 cmTipo de contenido:
  • texto
Tipo de medio:
  • no mediado
Tipo de soporte:
  • volumen
ISBN:
  • 0123747163
  • 9780123747167
Tema(s): Clasificación CDD:
  • 621.3822 C462s 2011
Contenidos:
1.3. Continuous-Time Signals -- 1.3.1. Basic Signal Operations--Time Shifting and Reversal -- 1.3.2. Even and Odd Signals -- 1.3.3. Periodic and Aperiodic Signals -- 1.3.4. Finite-Energy and Finite Power Signals -- 1.4. Representation Using Basic Signals -- 1.4.1. Complex Exponentials -- 1.4.2. Unit-Step, Unit-Impulse, and Ramp Signals -- 1.4.3. Special Signals--the Sampling Signal and the Sinc -- 1.4.4. Basic Signals Operations--Time Scaling, Frequency Shifting, and Windowing -- 1.4.5. Generic Representation of Signals -- 1.5. What Have We Accomplished? Where do we Go from Here? -- Problems -- Chapter 2. Continuous-Time Systems -- 2.1. Introduction -- 2.2. System Concept -- 2.2.1. System Classification -- 2.3. LTI Continuous-Time Systems -- 2.3.1. Linearity -- 2.3.2. Time Invariance -- 2.3.3. Representation of Systems by Differential Equations -- 2.3.4. Application of Superposition and Time Invariance -- 2.3.5. Convolution Integral -- 2.3.6. Causality --^
10.2.4. Time and Frequency Supports -- 10.2.5. Parseval´s Energy Result -- 10.2.6. Time and Frequency Shifts -- 10.2.7. Symmetry -- 10.2.8. Convolution Sum -- 10.3. Fourier Series of Discrete-Time Periodic Signals -- 10.3.1. Complex Exponential Discrete Fourier Series -- 10.3.2. Connection with the Z-Transform.
2.3.7. Graphical Computation of Convolution Integral -- 2.3.8. Interconnection of Systems--Block Diagrams -- 2.3.9. Bounded-Input Bounded-Output Stability -- 2.4. What have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 3. The laplace Transform -- 3.1. Introduction -- 3.2. The Two-Sided Laplace Transform -- 3.2.1. Eigenfunctions of LTI Systems -- 3.2.2. Poles and Zeros and Region of Convergence -- 3.3. The One-Sided Laplace Transform -- 3.3.1. Linearity -- 3.3.2. Differentiation -- 3.3.3. Integration -- 3.3.4. Time Shifting -- 3.3.5. Convolution Integral -- 3.4. Inverse Laplace Transform -- 3.4.1. Inverse of One-Sided Laplace Transforms -- 3.4.2. Inverse of Functions Containing e-ps Terms -- 3.4.3. Inverse of Two-Sided Laplace Transforms -- 3.5. Analysis of LTI-Systems -- 3.5.1. LTI Systems Represented by Ordinary Differential Equations -- 3.5.2. Computation of the Convolution Integral -- 3.6. What Have We Accomplished? Where Do We Go from Here? -- Problems --^
5.2. From the Fourier Series to the Fourier Transform -- 5.3. Existence of the Fourier Transform -- 5.4. Fourier Transforms from the Laplace Transform -- 5.5. Linearity, Inverse Proportionality, and Duality -- 5.5.1. Linearity -- 5.5.2. Inverse Proportionality of Time and Frequency -- 5.5.3. Duality -- 5.6. Spectral Representation -- 5.6.1. Signal Modulation -- 5.6.2. Fourier Transform of Periodic Signals -- 5.6.3. Parseval´s Energy Conservation -- 5.6.4. Symmetry of Spectral Representations -- 5.7. Convolution and Filtering -- 5.7.1. Basics of Filtering -- 5.7.2. Ideal Filters -- 5.7.3. Frequency Response from Poles and Zeros -- 5.7.4. Spectrum Analyzer -- 5.8. Additonal Properties -- 5.8.1. Time Shifting -- 5.8.2. Differentiation and Integration -- 5.9. What Have We Accomplished? What Is Next? -- Problems -- Chapter 6. Application to Control and Communications -- 6.1. Introduction -- 6.2. System Connections and Block Diagrams -- 6.3. Application to Classic Control --^
6.3.1. Stability and Stabilization -- 6.3.2. Transient Analysis of First- and Second-Order Control Systems -- 6.4. Application to Communications -- 6.4.1. AM with Suppressed Carrier -- 6.4.2. Commercial AM -- 6.4.3. AM Single Sideband -- 6.4.4. Quadrature AM and Frequency-Division Multiplexing -- 6.4.5. Angle Modulation -- 6.5. Analog Filtering -- 6.5.1. Filtering Basics -- 6.5.2. Butterworth Low-Pass Filter Design -- 6.5.3. Chebyshev Low-Pass Filter Design -- 6.5.4. Frequency Transformations -- 6.5.5. Filter Design with MATLAB -- 6.6. What Have We Accomplished? What Is Next? -- Problems -- Part 3. Theory and Application of Discrete- Time Signals and Systems -- Chapter 7. Sampling Theory -- 7.1. Introduction -- 7.2. Uniform Sampling -- 7.2.1. Pulse Amplitude Modulation -- 7.2.2. Ideal Impulse Sampling -- 7.2.3. Reconstruction of the Original Continuous-Time Signal -- 7.2.4. Signal Reconstruction from Sinc Interpolation -- 7.2.5. Sampling Simulation with MATLAB --^
7.3. The Nyquist-Shannon Sampling Theorem -- 7.3.1. Sampling of Modulated Signals -- 7.4. Practical Aspects of Sampling -- 7.4.1. Sample-and-Hold Sampling -- 7.4.2. Quantization and Conding -- 7.4.3. Sampling, Quantizing, and Coding with MATLAB -- 7.5. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 8. Discrete-Time Signals and Systems -- 8.1. Introduction -- 8.2. Discrete-Time Signals -- 8.2.1. Periodic and Aperiodic Signals -- 8.2.2. Finite-Energy and Finite-Power Discrete-Time Signals -- 8.2.3. Even and Odd Signals -- 8.2.4. Basic Discrete-Time Signals -- 8.3. Discrete-Time Systems -- 8.3.1. Recursive and Nonrecursive Discrete-Time Systems -- 8.3.2. Discrete-Time Systems Represented by Difference Equations -- 8.3.3. The Convolution Sum -- 8.3.4. Linear and Nonlinear Filtering with MATLAB -- 8.3.5. Causality and Stability of Discrete-Time Systems -- 8.4. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 9. The Z-Transform --^
9.1. Introduction -- 9.2. Laplace Transform of Sampled Signals -- 9.3. Two-Sided Z-Transform -- 9.3.1. Region of Convergence -- 9.4. One-Sided Z-Transform -- 9.4.1. Computing the Z-Transform with Symbolic MATLAB -- 9.4.2. Signal Behavior and Poles -- 9.4.3. Convolution Sum and Transfer Function -- 9.4.4. Interconnection of Discrete-Time Systems -- 9.4.5. Initial and Final Value Properties -- 9.5. One-Sided Z-Transform Inverse -- 9.5.1. Long-Division Method -- 9.5.2. Partial Fraction Expansion -- 9.5.3. Inverse Z-Transform with MATLAB -- 9.5.4. Solution of Difference Equations -- 9.5.5. Inverse of Two-Sided Z-Transforms -- 9.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems -- 10.1. Introduction -- 10.2. Discrete-Time Fourier Transform -- 10.2.1. Sampling, Z-Transform, Eigenfunctions, and the DTFT -- 10.2.2. Duality in Time and Frequency -- 10.2.3. Computation of the DTFT Using MATLAB --^
Chapter 4. Frequency Analysis: The Fourier Series -- 4.1. Introduction -- 4.2. Eigenfunctions Revisited -- 4.3. Complex Exponential Fourier Series -- 4.4. Line Spectra -- 4.4.1. Parseval´s Theorem--Power Distribution over Frequency -- 4.4.2. Symmetry of Line Spectra -- 4.5. Trigonometric Fourier Series -- 4.6. Fourier Coefficients from Laplace -- 4.7. Convergence of the Fourier Series -- 4.8. Time and Frequency Shifting -- 4.9. Response of LTI Systems to Periodic Signals -- 4.9.1. Sinusoidal Steady State -- 4.9.2. Filtering of Periodic Signals -- 4.10. Other Properties of the Fourier Series -- 4.10.1. Reflection and Even and Odd Periodic Signals -- 4.10.2. Linearity of Fourier Series--Addition of Periodic Signals -- 4.10.3. Multiplicationof Periodic Signals -- 4.10.4. Derivatives and Integrals of Periodic Signals -- 4.11. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 5. Frequency Analysis: The Fourier Transform -- 5.1. Introduction --^
Part 1. Introduction -- Chapter 0. From the Ground Up! -- 0.1. Signals and Systems and Digital Technologies -- 0.2. Examples of Signal Processing Applications -- 0.2.1. Compact-Disc Player -- 0.2.2. Software-Defined Radio and Cognitive Radio -- 0.2.3. Computer-Controlled Systems -- 0.3. Analog or Discrete? -- 0.3.1. Continuous-Time and Discrete-Time Representations -- 0.3.2. Derivatives and Finite Differences -- 0.3.3. Integrals and Summations -- 0.3.4. Differential and Difference Equations -- 0.4. Complex or Real? -- 0.4.1. Complex Numbers and Vectors -- 0.4.2. Functions of a Complex Variable -- 0.4.3. Phasors and Sinusoidal Steady State -- 0.4.4. Phasor Connection -- 0.5. Soft Introduction to MATLAB -- 0.5.1. Numerical Computations -- 0.5.2. Symbolic Computations -- Problems -- Part 2. Theory and Application of Continuous-Time Signals and Systems -- Chapter 1. Continous-Time Signals -- 1.1. Introduction -- 1.2. Classification of Time-Dependent Signals --^
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Reserva Libro Biblioteca Central Reserva Colección General 621.3822 C462s 2011 (Navegar estantería(Abre debajo)) Disponible GEN 33409002834178
Total de reservas: 0

Incluye bibliografía (p. 746-748).

1.3. Continuous-Time Signals -- 1.3.1. Basic Signal Operations--Time Shifting and Reversal -- 1.3.2. Even and Odd Signals -- 1.3.3. Periodic and Aperiodic Signals -- 1.3.4. Finite-Energy and Finite Power Signals -- 1.4. Representation Using Basic Signals -- 1.4.1. Complex Exponentials -- 1.4.2. Unit-Step, Unit-Impulse, and Ramp Signals -- 1.4.3. Special Signals--the Sampling Signal and the Sinc -- 1.4.4. Basic Signals Operations--Time Scaling, Frequency Shifting, and Windowing -- 1.4.5. Generic Representation of Signals -- 1.5. What Have We Accomplished? Where do we Go from Here? -- Problems -- Chapter 2. Continuous-Time Systems -- 2.1. Introduction -- 2.2. System Concept -- 2.2.1. System Classification -- 2.3. LTI Continuous-Time Systems -- 2.3.1. Linearity -- 2.3.2. Time Invariance -- 2.3.3. Representation of Systems by Differential Equations -- 2.3.4. Application of Superposition and Time Invariance -- 2.3.5. Convolution Integral -- 2.3.6. Causality --^

10.2.4. Time and Frequency Supports -- 10.2.5. Parseval´s Energy Result -- 10.2.6. Time and Frequency Shifts -- 10.2.7. Symmetry -- 10.2.8. Convolution Sum -- 10.3. Fourier Series of Discrete-Time Periodic Signals -- 10.3.1. Complex Exponential Discrete Fourier Series -- 10.3.2. Connection with the Z-Transform.

2.3.7. Graphical Computation of Convolution Integral -- 2.3.8. Interconnection of Systems--Block Diagrams -- 2.3.9. Bounded-Input Bounded-Output Stability -- 2.4. What have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 3. The laplace Transform -- 3.1. Introduction -- 3.2. The Two-Sided Laplace Transform -- 3.2.1. Eigenfunctions of LTI Systems -- 3.2.2. Poles and Zeros and Region of Convergence -- 3.3. The One-Sided Laplace Transform -- 3.3.1. Linearity -- 3.3.2. Differentiation -- 3.3.3. Integration -- 3.3.4. Time Shifting -- 3.3.5. Convolution Integral -- 3.4. Inverse Laplace Transform -- 3.4.1. Inverse of One-Sided Laplace Transforms -- 3.4.2. Inverse of Functions Containing e-ps Terms -- 3.4.3. Inverse of Two-Sided Laplace Transforms -- 3.5. Analysis of LTI-Systems -- 3.5.1. LTI Systems Represented by Ordinary Differential Equations -- 3.5.2. Computation of the Convolution Integral -- 3.6. What Have We Accomplished? Where Do We Go from Here? -- Problems --^

5.2. From the Fourier Series to the Fourier Transform -- 5.3. Existence of the Fourier Transform -- 5.4. Fourier Transforms from the Laplace Transform -- 5.5. Linearity, Inverse Proportionality, and Duality -- 5.5.1. Linearity -- 5.5.2. Inverse Proportionality of Time and Frequency -- 5.5.3. Duality -- 5.6. Spectral Representation -- 5.6.1. Signal Modulation -- 5.6.2. Fourier Transform of Periodic Signals -- 5.6.3. Parseval´s Energy Conservation -- 5.6.4. Symmetry of Spectral Representations -- 5.7. Convolution and Filtering -- 5.7.1. Basics of Filtering -- 5.7.2. Ideal Filters -- 5.7.3. Frequency Response from Poles and Zeros -- 5.7.4. Spectrum Analyzer -- 5.8. Additonal Properties -- 5.8.1. Time Shifting -- 5.8.2. Differentiation and Integration -- 5.9. What Have We Accomplished? What Is Next? -- Problems -- Chapter 6. Application to Control and Communications -- 6.1. Introduction -- 6.2. System Connections and Block Diagrams -- 6.3. Application to Classic Control --^

6.3.1. Stability and Stabilization -- 6.3.2. Transient Analysis of First- and Second-Order Control Systems -- 6.4. Application to Communications -- 6.4.1. AM with Suppressed Carrier -- 6.4.2. Commercial AM -- 6.4.3. AM Single Sideband -- 6.4.4. Quadrature AM and Frequency-Division Multiplexing -- 6.4.5. Angle Modulation -- 6.5. Analog Filtering -- 6.5.1. Filtering Basics -- 6.5.2. Butterworth Low-Pass Filter Design -- 6.5.3. Chebyshev Low-Pass Filter Design -- 6.5.4. Frequency Transformations -- 6.5.5. Filter Design with MATLAB -- 6.6. What Have We Accomplished? What Is Next? -- Problems -- Part 3. Theory and Application of Discrete- Time Signals and Systems -- Chapter 7. Sampling Theory -- 7.1. Introduction -- 7.2. Uniform Sampling -- 7.2.1. Pulse Amplitude Modulation -- 7.2.2. Ideal Impulse Sampling -- 7.2.3. Reconstruction of the Original Continuous-Time Signal -- 7.2.4. Signal Reconstruction from Sinc Interpolation -- 7.2.5. Sampling Simulation with MATLAB --^

7.3. The Nyquist-Shannon Sampling Theorem -- 7.3.1. Sampling of Modulated Signals -- 7.4. Practical Aspects of Sampling -- 7.4.1. Sample-and-Hold Sampling -- 7.4.2. Quantization and Conding -- 7.4.3. Sampling, Quantizing, and Coding with MATLAB -- 7.5. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 8. Discrete-Time Signals and Systems -- 8.1. Introduction -- 8.2. Discrete-Time Signals -- 8.2.1. Periodic and Aperiodic Signals -- 8.2.2. Finite-Energy and Finite-Power Discrete-Time Signals -- 8.2.3. Even and Odd Signals -- 8.2.4. Basic Discrete-Time Signals -- 8.3. Discrete-Time Systems -- 8.3.1. Recursive and Nonrecursive Discrete-Time Systems -- 8.3.2. Discrete-Time Systems Represented by Difference Equations -- 8.3.3. The Convolution Sum -- 8.3.4. Linear and Nonlinear Filtering with MATLAB -- 8.3.5. Causality and Stability of Discrete-Time Systems -- 8.4. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 9. The Z-Transform --^

9.1. Introduction -- 9.2. Laplace Transform of Sampled Signals -- 9.3. Two-Sided Z-Transform -- 9.3.1. Region of Convergence -- 9.4. One-Sided Z-Transform -- 9.4.1. Computing the Z-Transform with Symbolic MATLAB -- 9.4.2. Signal Behavior and Poles -- 9.4.3. Convolution Sum and Transfer Function -- 9.4.4. Interconnection of Discrete-Time Systems -- 9.4.5. Initial and Final Value Properties -- 9.5. One-Sided Z-Transform Inverse -- 9.5.1. Long-Division Method -- 9.5.2. Partial Fraction Expansion -- 9.5.3. Inverse Z-Transform with MATLAB -- 9.5.4. Solution of Difference Equations -- 9.5.5. Inverse of Two-Sided Z-Transforms -- 9.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems -- 10.1. Introduction -- 10.2. Discrete-Time Fourier Transform -- 10.2.1. Sampling, Z-Transform, Eigenfunctions, and the DTFT -- 10.2.2. Duality in Time and Frequency -- 10.2.3. Computation of the DTFT Using MATLAB --^

Chapter 4. Frequency Analysis: The Fourier Series -- 4.1. Introduction -- 4.2. Eigenfunctions Revisited -- 4.3. Complex Exponential Fourier Series -- 4.4. Line Spectra -- 4.4.1. Parseval´s Theorem--Power Distribution over Frequency -- 4.4.2. Symmetry of Line Spectra -- 4.5. Trigonometric Fourier Series -- 4.6. Fourier Coefficients from Laplace -- 4.7. Convergence of the Fourier Series -- 4.8. Time and Frequency Shifting -- 4.9. Response of LTI Systems to Periodic Signals -- 4.9.1. Sinusoidal Steady State -- 4.9.2. Filtering of Periodic Signals -- 4.10. Other Properties of the Fourier Series -- 4.10.1. Reflection and Even and Odd Periodic Signals -- 4.10.2. Linearity of Fourier Series--Addition of Periodic Signals -- 4.10.3. Multiplicationof Periodic Signals -- 4.10.4. Derivatives and Integrals of Periodic Signals -- 4.11. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 5. Frequency Analysis: The Fourier Transform -- 5.1. Introduction --^

Part 1. Introduction -- Chapter 0. From the Ground Up! -- 0.1. Signals and Systems and Digital Technologies -- 0.2. Examples of Signal Processing Applications -- 0.2.1. Compact-Disc Player -- 0.2.2. Software-Defined Radio and Cognitive Radio -- 0.2.3. Computer-Controlled Systems -- 0.3. Analog or Discrete? -- 0.3.1. Continuous-Time and Discrete-Time Representations -- 0.3.2. Derivatives and Finite Differences -- 0.3.3. Integrals and Summations -- 0.3.4. Differential and Difference Equations -- 0.4. Complex or Real? -- 0.4.1. Complex Numbers and Vectors -- 0.4.2. Functions of a Complex Variable -- 0.4.3. Phasors and Sinusoidal Steady State -- 0.4.4. Phasor Connection -- 0.5. Soft Introduction to MATLAB -- 0.5.1. Numerical Computations -- 0.5.2. Symbolic Computations -- Problems -- Part 2. Theory and Application of Continuous-Time Signals and Systems -- Chapter 1. Continous-Time Signals -- 1.1. Introduction -- 1.2. Classification of Time-Dependent Signals --^

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha