Signals and systems using MATLAB /
Chaparro, Luis F,
Signals and systems using MATLAB / Luis F. Chaparro. - xvi, 752 páginas : ilustraciones ; 25 cm.
Incluye bibliografía (p. 746-748).
1.3. Continuous-Time Signals -- 1.3.1. Basic Signal Operations--Time Shifting and Reversal -- 1.3.2. Even and Odd Signals -- 1.3.3. Periodic and Aperiodic Signals -- 1.3.4. Finite-Energy and Finite Power Signals -- 1.4. Representation Using Basic Signals -- 1.4.1. Complex Exponentials -- 1.4.2. Unit-Step, Unit-Impulse, and Ramp Signals -- 1.4.3. Special Signals--the Sampling Signal and the Sinc -- 1.4.4. Basic Signals Operations--Time Scaling, Frequency Shifting, and Windowing -- 1.4.5. Generic Representation of Signals -- 1.5. What Have We Accomplished? Where do we Go from Here? -- Problems -- Chapter 2. Continuous-Time Systems -- 2.1. Introduction -- 2.2. System Concept -- 2.2.1. System Classification -- 2.3. LTI Continuous-Time Systems -- 2.3.1. Linearity -- 2.3.2. Time Invariance -- 2.3.3. Representation of Systems by Differential Equations -- 2.3.4. Application of Superposition and Time Invariance -- 2.3.5. Convolution Integral -- 2.3.6. Causality --^ 10.2.4. Time and Frequency Supports -- 10.2.5. Parseval´s Energy Result -- 10.2.6. Time and Frequency Shifts -- 10.2.7. Symmetry -- 10.2.8. Convolution Sum -- 10.3. Fourier Series of Discrete-Time Periodic Signals -- 10.3.1. Complex Exponential Discrete Fourier Series -- 10.3.2. Connection with the Z-Transform. 2.3.7. Graphical Computation of Convolution Integral -- 2.3.8. Interconnection of Systems--Block Diagrams -- 2.3.9. Bounded-Input Bounded-Output Stability -- 2.4. What have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 3. The laplace Transform -- 3.1. Introduction -- 3.2. The Two-Sided Laplace Transform -- 3.2.1. Eigenfunctions of LTI Systems -- 3.2.2. Poles and Zeros and Region of Convergence -- 3.3. The One-Sided Laplace Transform -- 3.3.1. Linearity -- 3.3.2. Differentiation -- 3.3.3. Integration -- 3.3.4. Time Shifting -- 3.3.5. Convolution Integral -- 3.4. Inverse Laplace Transform -- 3.4.1. Inverse of One-Sided Laplace Transforms -- 3.4.2. Inverse of Functions Containing e-ps Terms -- 3.4.3. Inverse of Two-Sided Laplace Transforms -- 3.5. Analysis of LTI-Systems -- 3.5.1. LTI Systems Represented by Ordinary Differential Equations -- 3.5.2. Computation of the Convolution Integral -- 3.6. What Have We Accomplished? Where Do We Go from Here? -- Problems --^ 5.2. From the Fourier Series to the Fourier Transform -- 5.3. Existence of the Fourier Transform -- 5.4. Fourier Transforms from the Laplace Transform -- 5.5. Linearity, Inverse Proportionality, and Duality -- 5.5.1. Linearity -- 5.5.2. Inverse Proportionality of Time and Frequency -- 5.5.3. Duality -- 5.6. Spectral Representation -- 5.6.1. Signal Modulation -- 5.6.2. Fourier Transform of Periodic Signals -- 5.6.3. Parseval´s Energy Conservation -- 5.6.4. Symmetry of Spectral Representations -- 5.7. Convolution and Filtering -- 5.7.1. Basics of Filtering -- 5.7.2. Ideal Filters -- 5.7.3. Frequency Response from Poles and Zeros -- 5.7.4. Spectrum Analyzer -- 5.8. Additonal Properties -- 5.8.1. Time Shifting -- 5.8.2. Differentiation and Integration -- 5.9. What Have We Accomplished? What Is Next? -- Problems -- Chapter 6. Application to Control and Communications -- 6.1. Introduction -- 6.2. System Connections and Block Diagrams -- 6.3. Application to Classic Control --^ 6.3.1. Stability and Stabilization -- 6.3.2. Transient Analysis of First- and Second-Order Control Systems -- 6.4. Application to Communications -- 6.4.1. AM with Suppressed Carrier -- 6.4.2. Commercial AM -- 6.4.3. AM Single Sideband -- 6.4.4. Quadrature AM and Frequency-Division Multiplexing -- 6.4.5. Angle Modulation -- 6.5. Analog Filtering -- 6.5.1. Filtering Basics -- 6.5.2. Butterworth Low-Pass Filter Design -- 6.5.3. Chebyshev Low-Pass Filter Design -- 6.5.4. Frequency Transformations -- 6.5.5. Filter Design with MATLAB -- 6.6. What Have We Accomplished? What Is Next? -- Problems -- Part 3. Theory and Application of Discrete- Time Signals and Systems -- Chapter 7. Sampling Theory -- 7.1. Introduction -- 7.2. Uniform Sampling -- 7.2.1. Pulse Amplitude Modulation -- 7.2.2. Ideal Impulse Sampling -- 7.2.3. Reconstruction of the Original Continuous-Time Signal -- 7.2.4. Signal Reconstruction from Sinc Interpolation -- 7.2.5. Sampling Simulation with MATLAB --^ 7.3. The Nyquist-Shannon Sampling Theorem -- 7.3.1. Sampling of Modulated Signals -- 7.4. Practical Aspects of Sampling -- 7.4.1. Sample-and-Hold Sampling -- 7.4.2. Quantization and Conding -- 7.4.3. Sampling, Quantizing, and Coding with MATLAB -- 7.5. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 8. Discrete-Time Signals and Systems -- 8.1. Introduction -- 8.2. Discrete-Time Signals -- 8.2.1. Periodic and Aperiodic Signals -- 8.2.2. Finite-Energy and Finite-Power Discrete-Time Signals -- 8.2.3. Even and Odd Signals -- 8.2.4. Basic Discrete-Time Signals -- 8.3. Discrete-Time Systems -- 8.3.1. Recursive and Nonrecursive Discrete-Time Systems -- 8.3.2. Discrete-Time Systems Represented by Difference Equations -- 8.3.3. The Convolution Sum -- 8.3.4. Linear and Nonlinear Filtering with MATLAB -- 8.3.5. Causality and Stability of Discrete-Time Systems -- 8.4. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 9. The Z-Transform --^ 9.1. Introduction -- 9.2. Laplace Transform of Sampled Signals -- 9.3. Two-Sided Z-Transform -- 9.3.1. Region of Convergence -- 9.4. One-Sided Z-Transform -- 9.4.1. Computing the Z-Transform with Symbolic MATLAB -- 9.4.2. Signal Behavior and Poles -- 9.4.3. Convolution Sum and Transfer Function -- 9.4.4. Interconnection of Discrete-Time Systems -- 9.4.5. Initial and Final Value Properties -- 9.5. One-Sided Z-Transform Inverse -- 9.5.1. Long-Division Method -- 9.5.2. Partial Fraction Expansion -- 9.5.3. Inverse Z-Transform with MATLAB -- 9.5.4. Solution of Difference Equations -- 9.5.5. Inverse of Two-Sided Z-Transforms -- 9.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems -- 10.1. Introduction -- 10.2. Discrete-Time Fourier Transform -- 10.2.1. Sampling, Z-Transform, Eigenfunctions, and the DTFT -- 10.2.2. Duality in Time and Frequency -- 10.2.3. Computation of the DTFT Using MATLAB --^ Chapter 4. Frequency Analysis: The Fourier Series -- 4.1. Introduction -- 4.2. Eigenfunctions Revisited -- 4.3. Complex Exponential Fourier Series -- 4.4. Line Spectra -- 4.4.1. Parseval´s Theorem--Power Distribution over Frequency -- 4.4.2. Symmetry of Line Spectra -- 4.5. Trigonometric Fourier Series -- 4.6. Fourier Coefficients from Laplace -- 4.7. Convergence of the Fourier Series -- 4.8. Time and Frequency Shifting -- 4.9. Response of LTI Systems to Periodic Signals -- 4.9.1. Sinusoidal Steady State -- 4.9.2. Filtering of Periodic Signals -- 4.10. Other Properties of the Fourier Series -- 4.10.1. Reflection and Even and Odd Periodic Signals -- 4.10.2. Linearity of Fourier Series--Addition of Periodic Signals -- 4.10.3. Multiplicationof Periodic Signals -- 4.10.4. Derivatives and Integrals of Periodic Signals -- 4.11. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 5. Frequency Analysis: The Fourier Transform -- 5.1. Introduction --^ Part 1. Introduction -- Chapter 0. From the Ground Up! -- 0.1. Signals and Systems and Digital Technologies -- 0.2. Examples of Signal Processing Applications -- 0.2.1. Compact-Disc Player -- 0.2.2. Software-Defined Radio and Cognitive Radio -- 0.2.3. Computer-Controlled Systems -- 0.3. Analog or Discrete? -- 0.3.1. Continuous-Time and Discrete-Time Representations -- 0.3.2. Derivatives and Finite Differences -- 0.3.3. Integrals and Summations -- 0.3.4. Differential and Difference Equations -- 0.4. Complex or Real? -- 0.4.1. Complex Numbers and Vectors -- 0.4.2. Functions of a Complex Variable -- 0.4.3. Phasors and Sinusoidal Steady State -- 0.4.4. Phasor Connection -- 0.5. Soft Introduction to MATLAB -- 0.5.1. Numerical Computations -- 0.5.2. Symbolic Computations -- Problems -- Part 2. Theory and Application of Continuous-Time Signals and Systems -- Chapter 1. Continous-Time Signals -- 1.1. Introduction -- 1.2. Classification of Time-Dependent Signals --^
0123747163 9780123747167
MATLAB.
Análisis de sistemas.
Procesamiento de señales.--Técnicas digitales.
621.3822 / C462s 2011
Signals and systems using MATLAB / Luis F. Chaparro. - xvi, 752 páginas : ilustraciones ; 25 cm.
Incluye bibliografía (p. 746-748).
1.3. Continuous-Time Signals -- 1.3.1. Basic Signal Operations--Time Shifting and Reversal -- 1.3.2. Even and Odd Signals -- 1.3.3. Periodic and Aperiodic Signals -- 1.3.4. Finite-Energy and Finite Power Signals -- 1.4. Representation Using Basic Signals -- 1.4.1. Complex Exponentials -- 1.4.2. Unit-Step, Unit-Impulse, and Ramp Signals -- 1.4.3. Special Signals--the Sampling Signal and the Sinc -- 1.4.4. Basic Signals Operations--Time Scaling, Frequency Shifting, and Windowing -- 1.4.5. Generic Representation of Signals -- 1.5. What Have We Accomplished? Where do we Go from Here? -- Problems -- Chapter 2. Continuous-Time Systems -- 2.1. Introduction -- 2.2. System Concept -- 2.2.1. System Classification -- 2.3. LTI Continuous-Time Systems -- 2.3.1. Linearity -- 2.3.2. Time Invariance -- 2.3.3. Representation of Systems by Differential Equations -- 2.3.4. Application of Superposition and Time Invariance -- 2.3.5. Convolution Integral -- 2.3.6. Causality --^ 10.2.4. Time and Frequency Supports -- 10.2.5. Parseval´s Energy Result -- 10.2.6. Time and Frequency Shifts -- 10.2.7. Symmetry -- 10.2.8. Convolution Sum -- 10.3. Fourier Series of Discrete-Time Periodic Signals -- 10.3.1. Complex Exponential Discrete Fourier Series -- 10.3.2. Connection with the Z-Transform. 2.3.7. Graphical Computation of Convolution Integral -- 2.3.8. Interconnection of Systems--Block Diagrams -- 2.3.9. Bounded-Input Bounded-Output Stability -- 2.4. What have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 3. The laplace Transform -- 3.1. Introduction -- 3.2. The Two-Sided Laplace Transform -- 3.2.1. Eigenfunctions of LTI Systems -- 3.2.2. Poles and Zeros and Region of Convergence -- 3.3. The One-Sided Laplace Transform -- 3.3.1. Linearity -- 3.3.2. Differentiation -- 3.3.3. Integration -- 3.3.4. Time Shifting -- 3.3.5. Convolution Integral -- 3.4. Inverse Laplace Transform -- 3.4.1. Inverse of One-Sided Laplace Transforms -- 3.4.2. Inverse of Functions Containing e-ps Terms -- 3.4.3. Inverse of Two-Sided Laplace Transforms -- 3.5. Analysis of LTI-Systems -- 3.5.1. LTI Systems Represented by Ordinary Differential Equations -- 3.5.2. Computation of the Convolution Integral -- 3.6. What Have We Accomplished? Where Do We Go from Here? -- Problems --^ 5.2. From the Fourier Series to the Fourier Transform -- 5.3. Existence of the Fourier Transform -- 5.4. Fourier Transforms from the Laplace Transform -- 5.5. Linearity, Inverse Proportionality, and Duality -- 5.5.1. Linearity -- 5.5.2. Inverse Proportionality of Time and Frequency -- 5.5.3. Duality -- 5.6. Spectral Representation -- 5.6.1. Signal Modulation -- 5.6.2. Fourier Transform of Periodic Signals -- 5.6.3. Parseval´s Energy Conservation -- 5.6.4. Symmetry of Spectral Representations -- 5.7. Convolution and Filtering -- 5.7.1. Basics of Filtering -- 5.7.2. Ideal Filters -- 5.7.3. Frequency Response from Poles and Zeros -- 5.7.4. Spectrum Analyzer -- 5.8. Additonal Properties -- 5.8.1. Time Shifting -- 5.8.2. Differentiation and Integration -- 5.9. What Have We Accomplished? What Is Next? -- Problems -- Chapter 6. Application to Control and Communications -- 6.1. Introduction -- 6.2. System Connections and Block Diagrams -- 6.3. Application to Classic Control --^ 6.3.1. Stability and Stabilization -- 6.3.2. Transient Analysis of First- and Second-Order Control Systems -- 6.4. Application to Communications -- 6.4.1. AM with Suppressed Carrier -- 6.4.2. Commercial AM -- 6.4.3. AM Single Sideband -- 6.4.4. Quadrature AM and Frequency-Division Multiplexing -- 6.4.5. Angle Modulation -- 6.5. Analog Filtering -- 6.5.1. Filtering Basics -- 6.5.2. Butterworth Low-Pass Filter Design -- 6.5.3. Chebyshev Low-Pass Filter Design -- 6.5.4. Frequency Transformations -- 6.5.5. Filter Design with MATLAB -- 6.6. What Have We Accomplished? What Is Next? -- Problems -- Part 3. Theory and Application of Discrete- Time Signals and Systems -- Chapter 7. Sampling Theory -- 7.1. Introduction -- 7.2. Uniform Sampling -- 7.2.1. Pulse Amplitude Modulation -- 7.2.2. Ideal Impulse Sampling -- 7.2.3. Reconstruction of the Original Continuous-Time Signal -- 7.2.4. Signal Reconstruction from Sinc Interpolation -- 7.2.5. Sampling Simulation with MATLAB --^ 7.3. The Nyquist-Shannon Sampling Theorem -- 7.3.1. Sampling of Modulated Signals -- 7.4. Practical Aspects of Sampling -- 7.4.1. Sample-and-Hold Sampling -- 7.4.2. Quantization and Conding -- 7.4.3. Sampling, Quantizing, and Coding with MATLAB -- 7.5. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 8. Discrete-Time Signals and Systems -- 8.1. Introduction -- 8.2. Discrete-Time Signals -- 8.2.1. Periodic and Aperiodic Signals -- 8.2.2. Finite-Energy and Finite-Power Discrete-Time Signals -- 8.2.3. Even and Odd Signals -- 8.2.4. Basic Discrete-Time Signals -- 8.3. Discrete-Time Systems -- 8.3.1. Recursive and Nonrecursive Discrete-Time Systems -- 8.3.2. Discrete-Time Systems Represented by Difference Equations -- 8.3.3. The Convolution Sum -- 8.3.4. Linear and Nonlinear Filtering with MATLAB -- 8.3.5. Causality and Stability of Discrete-Time Systems -- 8.4. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 9. The Z-Transform --^ 9.1. Introduction -- 9.2. Laplace Transform of Sampled Signals -- 9.3. Two-Sided Z-Transform -- 9.3.1. Region of Convergence -- 9.4. One-Sided Z-Transform -- 9.4.1. Computing the Z-Transform with Symbolic MATLAB -- 9.4.2. Signal Behavior and Poles -- 9.4.3. Convolution Sum and Transfer Function -- 9.4.4. Interconnection of Discrete-Time Systems -- 9.4.5. Initial and Final Value Properties -- 9.5. One-Sided Z-Transform Inverse -- 9.5.1. Long-Division Method -- 9.5.2. Partial Fraction Expansion -- 9.5.3. Inverse Z-Transform with MATLAB -- 9.5.4. Solution of Difference Equations -- 9.5.5. Inverse of Two-Sided Z-Transforms -- 9.6. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 10. Fourier Analysis of Discrete-Time Signals and Systems -- 10.1. Introduction -- 10.2. Discrete-Time Fourier Transform -- 10.2.1. Sampling, Z-Transform, Eigenfunctions, and the DTFT -- 10.2.2. Duality in Time and Frequency -- 10.2.3. Computation of the DTFT Using MATLAB --^ Chapter 4. Frequency Analysis: The Fourier Series -- 4.1. Introduction -- 4.2. Eigenfunctions Revisited -- 4.3. Complex Exponential Fourier Series -- 4.4. Line Spectra -- 4.4.1. Parseval´s Theorem--Power Distribution over Frequency -- 4.4.2. Symmetry of Line Spectra -- 4.5. Trigonometric Fourier Series -- 4.6. Fourier Coefficients from Laplace -- 4.7. Convergence of the Fourier Series -- 4.8. Time and Frequency Shifting -- 4.9. Response of LTI Systems to Periodic Signals -- 4.9.1. Sinusoidal Steady State -- 4.9.2. Filtering of Periodic Signals -- 4.10. Other Properties of the Fourier Series -- 4.10.1. Reflection and Even and Odd Periodic Signals -- 4.10.2. Linearity of Fourier Series--Addition of Periodic Signals -- 4.10.3. Multiplicationof Periodic Signals -- 4.10.4. Derivatives and Integrals of Periodic Signals -- 4.11. What Have We Accomplished? Where Do We Go from Here? -- Problems -- Chapter 5. Frequency Analysis: The Fourier Transform -- 5.1. Introduction --^ Part 1. Introduction -- Chapter 0. From the Ground Up! -- 0.1. Signals and Systems and Digital Technologies -- 0.2. Examples of Signal Processing Applications -- 0.2.1. Compact-Disc Player -- 0.2.2. Software-Defined Radio and Cognitive Radio -- 0.2.3. Computer-Controlled Systems -- 0.3. Analog or Discrete? -- 0.3.1. Continuous-Time and Discrete-Time Representations -- 0.3.2. Derivatives and Finite Differences -- 0.3.3. Integrals and Summations -- 0.3.4. Differential and Difference Equations -- 0.4. Complex or Real? -- 0.4.1. Complex Numbers and Vectors -- 0.4.2. Functions of a Complex Variable -- 0.4.3. Phasors and Sinusoidal Steady State -- 0.4.4. Phasor Connection -- 0.5. Soft Introduction to MATLAB -- 0.5.1. Numerical Computations -- 0.5.2. Symbolic Computations -- Problems -- Part 2. Theory and Application of Continuous-Time Signals and Systems -- Chapter 1. Continous-Time Signals -- 1.1. Introduction -- 1.2. Classification of Time-Dependent Signals --^
0123747163 9780123747167
MATLAB.
Análisis de sistemas.
Procesamiento de señales.--Técnicas digitales.
621.3822 / C462s 2011