000 | 03418nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-030-38438-8 | ||
003 | DE-He213 | ||
005 | 20220530131752.0 | ||
007 | cr nn 008mamaa | ||
008 | 200310s2020 sz | s |||| 0|eng d | ||
020 |
_a9783030384388 _9978-3-030-38438-8 |
||
024 | 7 |
_a10.1007/978-3-030-38438-8 _2doi |
|
072 | 7 |
_aPBT _2bicssc |
|
072 | 7 |
_aPBWL _2bicssc |
|
072 | 7 |
_aMAT029000 _2bisacsh |
|
072 | 7 |
_aPBT _2thema |
|
072 | 7 |
_aPBWL _2thema |
|
082 | 0 | 4 |
_a519.2 _223 |
100 | 1 |
_aPanaretos, Victor M. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 3 |
_aAn Invitation to Statistics in Wasserstein Space _h[electronic resource] / _cby Victor M. Panaretos, Yoav Zemel. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2020. |
|
300 |
_aXIII, 147 páginas30 ilustraciones, 24 ilustraciones in color. _bonline resource. |
||
336 |
_atexto _btxt _2rdacontent |
||
337 |
_acomputadora _bc _2rdamedia |
||
338 |
_arecurso en línea _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aSpringerBriefs in Probability and Mathematical Statistics, _x2365-4341 |
|
505 | 0 | _aOptimal transportation -- The Wasserstein space -- Fréchet means in the Wasserstein space -- Phase variation and Fréchet means -- Construction of Fréchet means and multicouplings. | |
506 | 0 | _aOpen Access | |
520 | _aThis open access book presents the key aspects of statistics in Wasserstein spaces, i.e. statistics in the space of probability measures when endowed with the geometry of optimal transportation. Further to reviewing state-of-the-art aspects, it also provides an accessible introduction to the fundamentals of this current topic, as well as an overview that will serve as an invitation and catalyst for further research. Statistics in Wasserstein spaces represents an emerging topic in mathematical statistics, situated at the interface between functional data analysis (where the data are functions, thus lying in infinite dimensional Hilbert space) and non-Euclidean statistics (where the data satisfy nonlinear constraints, thus lying on non-Euclidean manifolds). The Wasserstein space provides the natural mathematical formalism to describe data collections that are best modeled as random measures on Euclidean space (e.g. images and point processes). Such random measures carry the infinite dimensional traits of functional data, but are intrinsically nonlinear due to positivity and integrability restrictions. Indeed, their dominating statistical variation arises through random deformations of an underlying template, a theme that is pursued in depth in this monograph. | ||
650 | 0 | _aProbabilities. | |
650 | 1 | 4 | _aProbability Theory. |
700 | 1 |
_aZemel, Yoav. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030384371 |
776 | 0 | 8 |
_iPrinted edition: _z9783030384395 |
830 | 0 |
_aSpringerBriefs in Probability and Mathematical Statistics, _x2365-4341 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-38438-8 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-SXMS | ||
912 | _aZDB-2-SOB | ||
999 |
_c153402 _d153402 |