000 03970cam^a22003731a^4500
001 UDM01000137029
003 UDM
005 20210527141759.0
008 110520s2006^^^^inua^^^^^^^^^^001^0^eng^d
020 _a1592575129
020 _a9781592575121
040 _aSSL
_cSSL
_dBAKER
_dBTCTA
_dVP@
_dDLC
_dSJP
_dYDXCP
_dOKN
_dHALAN
_dUN@
082 0 4 _a515.076
_bK29h 2006
100 1 _9228641
_aKelley, W. Michael,
_eautor
245 1 4 _aThe humongous book of calculus problems :
_btranslated for people who don´t speak math /
_cW. Michael Kelley.
264 3 1 _aIndianapolis, IN :
_bAlpha,
_cc2006.
300 _ax, 565 páginas :
_bilustraciones
336 _atexto
_btxt
_2rdacontent
337 _ano mediado
_bn
_2rdamedia
338 _avolumen
_bnc
_2rdacarrier
505 0 _a_
_gChapter 1
_tLinear Equations and Inequalities: Problems containing x to the first power
_g1 --
_gChapter 2
_tPolynomials: Because you can´t have exponents of I forever
_g15 --
_gChapter 3
_tRational Expressions: Fractions, fractions, and more fractions
_g27 --
_gChapter 4
_tFunctions: Now you´ll start seeing f(x) all over the place
_g41 --
_gChapter 5
_tLogarithmic and Exponential Functions: Functions like log, x, lu x, 4x, and e[superscript x]
_g57 --
_gChapter 6
_tConic Sections: Parabolas, circles, ellipses, and hyperbolas
_g69 --
_gChapter 7
_tFundamentals of Trigonometry: Inject sine, cosine, and tangent into the mix
_g91 --
_gChapter 8
_tTrigonometric Graphs, Identities, and Equations: Trig equations and identity proofs
_g105 --
_gChapter 9
_tInvestigating Limits: What height does the function intend to reach
_g123 --
_gChapter 10
_tEvaluating Limits: Calculate limits without a graph of the function
_g137 --
_gChapter 11
505 0 _a_
_tAdvanced Integration Techniques: Even more ways to find integrals
_g363 --
_gChapter 22
_tCross-Sectional and Rotational Volume: Please put on your 3-D glasses at this time
_g389 --
_gChapter 23
_tAdvanced Applications of Definite Integrals: More bounded integral problems
_g423 --
_gChapter 24
_tParametric and Polar Equations: Writing equations without x and y
_g443 --
_gChapter 25
_tDifferential Equations: Equations that contain a derivative
_g467 --
_gChapter 26
_tBasic Sequences and Series: What´s uglier than one fraction? Infinitely many
_g495 --
_gChapter 27
_tAdditional Infinite Series Convergence Tests: For use with uglier infinite series
_g511 --
_gChapter 28
_tAdvanced Infinite Series: Series that contain x´s
_g529 --
_gAppendix A
_tImportant Graphs to memorize and Graph Transformations
_g545 --
_gAppendix B
_tThe Unit Circle
_g551 --
_gAppendix C
_tTrigonometric Identities
_g553 --
_gAppendix D
_tDerivative Formulas
_g555 --
_gAppendix E
_tAnti-Derivative Formulas
_g557.
505 0 _a_
_tContinuity and the Difference Quotient: Unbreakable graphs
_g151 --
_gChapter 12
_tBasic Differentiation Methods: The four heavy hitters for finding derivatives
_g169 --
_gChapter 13
_tDerivatives and Function Graphs: What signs of derivatives tell you about graphs
_g187 --
_gChapter 14
_tBasic Applications of Differentiation: Put your derivatives skills to use
_g205 --
_gChapter 15
_tAdvanced Applications of Differentiation: Tricky but interesting uses for derivatives
_g223 --
_gChapter 16
_tAdditional Differentiation Techniques: Yet more ways to differentiate
_g247 --
_gChapter 17
_tApproximating Area: Estimating the area between a curve and the x-axiz
_g269 --
_gChapter 18
_tIntegration: Now the derivative´s not the answer, it´s the question
_g297 --
_gChapter 19
_tApplications of the Fundamental Theorem: Things to do with definite integrals
_g319 --
_gChapter 20
_tIntegrating Rational Expressions: Fractions inside the integral
_g343 --
_gChapter 21
650 1 4 _913113
_aCálculo
_xProblemas, ejercicios, etc.
650 1 4 _91387
_aCálculo.
740 0 _aCalculus problems.
942 _2ddc
_cGEN
991 _aC0
_bUN@
991 _aUVA
997 _aHZ
_b00
_c20140722
_lUDM01
_h1027
998 _aBATCH-UPD
_b00
_c20150317
_lUDM01
_h2156
999 _c124949
_d124949
900 _aFME