Imagen de portada de Amazon
Imagen de Amazon.com

Regularized System Identification [electronic resource] : Learning Dynamic Models from Data / by Gianluigi Pillonetto, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, Lennart Ljung.

Por: Colaborador(es): Tipo de material: TextoTextoSeries Communications and Control EngineeringEditor: Cham : Springer International Publishing : Imprint: Springer, 2022Edición: 1st ed. 2022Descripción: XXIV, 377 páginas85 ilustraciones, 73 ilustraciones in color. online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9783030958602
Tema(s): Formatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD:
  • 006.31 23
Recursos en línea:
Contenidos:
Chapter 1. Bias -- Chapter 2. Classical System Identification -- Chapter 3. Regularization of Linear Regression Models -- Chapter 4. Bayesian Interpretation of Regularization -- Chapter 5. Regularization for Linear System Identification -- Chapter 6. Regularization in Reproducing Kernel Hilbert Spaces -- Chapter 7. Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- Chapter 8. Regularization for Nonlinear System Identification -- Chapter 9. Numerical Experiments and Real-World Cases.
En: Springer Nature eBookResumen: This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. In many ways, this book is a complement and continuation of the much-used text book L. Ljung, System Identification, 978-0-13-656695-3. This is an open access book.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Chapter 1. Bias -- Chapter 2. Classical System Identification -- Chapter 3. Regularization of Linear Regression Models -- Chapter 4. Bayesian Interpretation of Regularization -- Chapter 5. Regularization for Linear System Identification -- Chapter 6. Regularization in Reproducing Kernel Hilbert Spaces -- Chapter 7. Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- Chapter 8. Regularization for Nonlinear System Identification -- Chapter 9. Numerical Experiments and Real-World Cases.

Open Access

This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods. The challenges it addresses lie at the intersection of several disciplines so Regularized System Identification will be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science. In many ways, this book is a complement and continuation of the much-used text book L. Ljung, System Identification, 978-0-13-656695-3. This is an open access book.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha