Imagen de portada de Amazon
Imagen de Amazon.com

Planar Maps, Random Walks and Circle Packing [electronic resource] : École d'Été de Probabilités de Saint-Flour XLVIII - 2018 / by Asaf Nachmias.

Por: Colaborador(es): Tipo de material: TextoTextoSeries École d'Été de Probabilités de Saint-Flour ; 2243Editor: Cham : Springer International Publishing : Imprint: Springer, 2020Edición: 1st ed. 2020Descripción: XII, 120 páginas36 ilustraciones, 8 ilustraciones in color. online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9783030279684
Tema(s): Formatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD:
  • 519.2 23
Recursos en línea: En: Springer Nature eBookResumen: This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Open Access

This open access book focuses on the interplay between random walks on planar maps and Koebe's circle packing theorem. Further topics covered include electric networks, the He-Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe's circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha