Artificial intelligence : foundations of computational agents / David L. Poole, Alan K. Mackworth.
Tipo de material: TextoEditor: New York, NY : Cambridge University Press, 2010Descripción: xvii, 662 páginas : ilustracionesTipo de contenido:- texto
- no mediado
- volumen
- 0521519004
- 9780521519007
- 006.3 P822a 2010
Tipo de ítem | Biblioteca actual | Colección | Signatura topográfica | Estado | Notas | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|---|
Libro | Biblioteca Central | Colección General | 006.3 P822a 2010 (Navegar estantería(Abre debajo)) | Disponible | GEN | 33409002875171 |
Incluye bibliografía.
Group decision making -- Mechanism design -- References and further reading -- Exercises -- 11. Beyond supervised learning. -- Clustering -- Learning belief networks -- Reinforcement learning -- Review -- References and further reading -- Exercises -- Part IV. Reasoning and individuals and relations: -- 12. Individuals and relations. -- Exploiting structure beyond features -- Symbols and semantics -- Datalog: a relational rule language -- Proofs and substitutions -- Function symbols -- Applications in natural language processing -- Equality -- Complete knowledge assumption -- Review -- References and further reading -- Exercises -- 13. Ontologies and knowledge-based systems. -- Knowledge sharing -- Flexible representations -- Ontologies and knowledge sharing -- Querying users and other knowledge sources -- Implementing knowledge-based systems -- Review -- References and further reading -- Exercises -- 14. Relational planning, learning and probabilistic reasoning. --^
Part I. Agents in the World: What Are Agents and How Can They Be Built?: 1. Artificial intelligence and agents. -- What is Artificial Intelligence? -- A brief history of AI -- Agents situated in environments -- Knowledge representation -- Dimensions of complexity -- Prototypical applications -- Overview of the book -- Review -- References and further reading -- Exercises -- 2. Agent architectures and hierarchical control. -- Agents -- Agent systems -- Hierarchical control -- Embedded and simulated agents -- Acting with reasoning -- Review -- References and further reading -- Exercises -- Part II. Representing and Reasoning: -- 3. States and searching. -- Problem solving as search -- State spaces -- Graph searching -- A generic searching algorithm -- Uninformed search strategies -- Heuristic search -- More sophisticated search -- Review -- References and further reading -- Exercises -- 4. Features and constraints: -- Features and states -- Possible worlds, variables, and constraints -- Generate-and-test algorithms -- Solving CSPs using Search -- Consistency algorithms -- Domain splitting -- Variable elimination -- Local search -- Population-based methods -- Optimization -- Review -- References and further reading -- Exercises -- 5. Propositions and inference. -- Propositions -- Propositional definite clauses -- Knowledge representation issues -- Proving by contradictions -- Complete knowledge assumption -- Abduction -- Causal models -- Review -- References and further reading -- Exercises -- 6. Reasoning under uncertainty. -- Probability -- Independence -- Belief networks -- Probabilistic inference -- Probability and time -- Review -- References and further reading -- Exercises --
Part III. Learning and Planning: -- 7. Learning: Overview and supervised learning. -- Learning issues -- Supervised learning -- Basic models for supervised learning -- Composite models -- Avoiding overfitting -- Case-based reasoning -- Learning as refining the hypothesis space -- Bayesian learning -- Review -- References and further reading -- Exercises -- 8. Planning with certainty. -- Representing states, actions, and goals -- Forward planning -- Regression planning -- Planning as a CSP -- Partial-order planning -- Review -- References and further reading -- Exercises -- 9. Planning under uncertainty. -- Preferences and utility -- One-off decisions -- -- Sequential decisions -- The value of information and control -- Decision processes -- Review -- References and further reading -- Exercises -- 10. Multiagent systems. -- Multiagent framework -- Representations of games -- Computing strategies with perfect information -- Partially observable multiagent reasoning --^
Planning with individuals and relations -- Learning with individuals and relations -- Probabilistic relational models --Review -- References and further reading -- Exercises -- Part V. The Big Picture: --15. Retrospect and prospect. -- Dimensions of complexity revisited -- Social and ethical consequences -- References and further reading -- Appendix A. Mathematical preliminaries and notation: -- Discrete mathematics -- Functions, factors, and arrays -- Relations and relational algebra.
No hay comentarios en este titulo.