Imagen de portada de Amazon
Imagen de Amazon.com

The Plaston Concept [electronic resource] : Plastic Deformation in Structural Materials / edited by Isao Tanaka, Nobuhiro Tsuji, Haruyuki Inui.

Colaborador(es): Tipo de material: TextoTextoEditor: Singapore : Springer Nature Singapore : Imprint: Springer, 2022Edición: 1st ed. 2022Descripción: VIII, 278 páginas214 ilustraciones, 130 ilustraciones in color. online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9789811677151
Tema(s): Formatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD:
  • 620.1 23
Recursos en línea:
Contenidos:
Part I. Introduction -- 1. Plaston induced plasticity in bulk nanostructured metals -- Part II. Simulation of plaston and plaston induced phenomena -- 2. Nucleation of plaston at surface and interface of metallic materials -- 3. Atomistic study of plaston in nanostructured metals -- 4. First principles calculations of collective motion of atoms in metals -- 5. Machine learning interatomic potentials with controlled accuracy -- 6. First principles calculations of dislocation cores in HCP metals -- Part III. Experimental analyses of plaston -- 7. STEM observation of plaston in alumina -- 8. Micro-pillar deformation experiments of brittle intermetallics in steel -- 9. Nano-indentation study of steels -- 10. Synchrotron x-ray study on plaston in metals -- 11. Improvement of fatigue lifetime by controlling plaston at crack tip -- Part IV. Design and development of high performance structural materials -- 12. Development of bulk nanostructured steels -- 13. Design and development of high Mn steels -- 14. Design and development novel magnesium alloys.
En: Springer Nature eBookResumen: This open access book presents the novel concept of plaston, which accounts for the high ductility or large plastic deformation of emerging high-performance structural materials, including bulk nanostructured metals, hetero-nanostructured materials, metallic glasses, intermetallics, and ceramics. The book describes simulation results of the collective atomic motion associated with plaston, by computational tools such as first-principle methods with predictive performance and large-scale atom-dynamics calculations. Multi-scale analyses with state-of-the art analytical tools nano/micro pillar deformation and nano-indentation experiments are also described. Finally, through collaborative efforts of experimental and computational work, examples of rational design and development of new structural materials are given, based on accurate understanding of deformation and fracture phenomena. This publication provides a valuable contribution to the field of structural materials research.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Part I. Introduction -- 1. Plaston induced plasticity in bulk nanostructured metals -- Part II. Simulation of plaston and plaston induced phenomena -- 2. Nucleation of plaston at surface and interface of metallic materials -- 3. Atomistic study of plaston in nanostructured metals -- 4. First principles calculations of collective motion of atoms in metals -- 5. Machine learning interatomic potentials with controlled accuracy -- 6. First principles calculations of dislocation cores in HCP metals -- Part III. Experimental analyses of plaston -- 7. STEM observation of plaston in alumina -- 8. Micro-pillar deformation experiments of brittle intermetallics in steel -- 9. Nano-indentation study of steels -- 10. Synchrotron x-ray study on plaston in metals -- 11. Improvement of fatigue lifetime by controlling plaston at crack tip -- Part IV. Design and development of high performance structural materials -- 12. Development of bulk nanostructured steels -- 13. Design and development of high Mn steels -- 14. Design and development novel magnesium alloys.

Open Access

This open access book presents the novel concept of plaston, which accounts for the high ductility or large plastic deformation of emerging high-performance structural materials, including bulk nanostructured metals, hetero-nanostructured materials, metallic glasses, intermetallics, and ceramics. The book describes simulation results of the collective atomic motion associated with plaston, by computational tools such as first-principle methods with predictive performance and large-scale atom-dynamics calculations. Multi-scale analyses with state-of-the art analytical tools nano/micro pillar deformation and nano-indentation experiments are also described. Finally, through collaborative efforts of experimental and computational work, examples of rational design and development of new structural materials are given, based on accurate understanding of deformation and fracture phenomena. This publication provides a valuable contribution to the field of structural materials research.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha