Imagen de portada de Amazon
Imagen de Amazon.com

Probability in Electrical Engineering and Computer Science [electronic resource] : An Application-Driven Course / by Jean Walrand.

Por: Colaborador(es): Tipo de material: TextoTextoEditor: Cham : Springer International Publishing : Imprint: Springer, 2021Edición: 1st ed. 2021Descripción: XXI, 380 páginas214 ilustraciones, 146 ilustraciones in color. online resourceTipo de contenido:
  • texto
Tipo de medio:
  • computadora
Tipo de soporte:
  • recurso en línea
ISBN:
  • 9783030499952
Tema(s): Formatos físicos adicionales: Printed edition:: Sin título; Printed edition:: Sin título; Printed edition:: Sin títuloClasificación CDD:
  • 004.0151 23
Recursos en línea:
Contenidos:
Chapter 1. Page Rank - A -- Chapter 2. Page Rank - B -- Chapter 3. Multiplexing - A -- Chapter 4. Multiplexing - B -- Chapter 5. Networks - A -- Chapter 6. Networks - B -- Chapter 7. Digital Link - A -- Chapter 8. Digital Link - B -- Chapter 9. Tracking - A -- Chapter 10. Tracking - B -- Chapter 11. Speech Recognition - A -- Chapter 12. Speech Recognition - B -- Chapter 13. Route planning - A -- Chapter 14. Route Planning - B -- chapter 15. Perspective & Complements -- A. Elementary Probability -- B. Basic Probability -- . Index.
En: Springer Nature eBookResumen: This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. The companion website now has many examples of Python demos and also Python labs used in Berkeley. Showcases techniques of applied probability with applications in EE and CS; Presents all topics with concrete applications so students see the relevance of the theory; Illustrates methods with Jupyter notebooks that use widgets to enable the users to modify parameters.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Chapter 1. Page Rank - A -- Chapter 2. Page Rank - B -- Chapter 3. Multiplexing - A -- Chapter 4. Multiplexing - B -- Chapter 5. Networks - A -- Chapter 6. Networks - B -- Chapter 7. Digital Link - A -- Chapter 8. Digital Link - B -- Chapter 9. Tracking - A -- Chapter 10. Tracking - B -- Chapter 11. Speech Recognition - A -- Chapter 12. Speech Recognition - B -- Chapter 13. Route planning - A -- Chapter 14. Route Planning - B -- chapter 15. Perspective & Complements -- A. Elementary Probability -- B. Basic Probability -- . Index.

Open Access

This revised textbook motivates and illustrates the techniques of applied probability by applications in electrical engineering and computer science (EECS). The author presents information processing and communication systems that use algorithms based on probabilistic models and techniques, including web searches, digital links, speech recognition, GPS, route planning, recommendation systems, classification, and estimation. He then explains how these applications work and, along the way, provides the readers with the understanding of the key concepts and methods of applied probability. Python labs enable the readers to experiment and consolidate their understanding. The book includes homework, solutions, and Jupyter notebooks. This edition includes new topics such as Boosting, Multi-armed bandits, statistical tests, social networks, queuing networks, and neural networks. The companion website now has many examples of Python demos and also Python labs used in Berkeley. Showcases techniques of applied probability with applications in EE and CS; Presents all topics with concrete applications so students see the relevance of the theory; Illustrates methods with Jupyter notebooks that use widgets to enable the users to modify parameters.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha