Introduction to computation and programming using Python : with application to understanding data / John V. Guttag.
Tipo de material: TextoIdioma: Inglés Editor: Cambridge, Massachusetts : The MIT Press, [2016]Edición: Second editionDescripción: xvii, 447 páginas ; 23 cmTipo de contenido:- texto
- sin mediación
- volumen
- 9780262529624
- 0262529629
- 005.133 G985i 2016
Tipo de ítem | Biblioteca actual | Colección | Signatura topográfica | Estado | Fecha de vencimiento | Código de barras | Reserva de ítems | |
---|---|---|---|---|---|---|---|---|
Libro | Biblioteca Central | Colección General | 005.133 G985i 2016 (Navegar estantería(Abre debajo)) | Disponible | 33409003115460 |
Navegando Biblioteca Central estanterías, Colección: Colección General Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
No hay imagen de cubierta disponible | ||||||||
005.133 G882j 2009 Java 6 : los fundamentos del lenguaje Java / | 005.133 G914e 2015 Estructuras de datos básicas : programación orientada a objetos con java / | 005.133 G925c 2000 CGI programming with Perl / | 005.133 G985i 2016 Introduction to computation and programming using Python : with application to understanding data / | 005.133 H249c 1990 The C++ answer book / | 005.133 H249p 2017 Python Scapy Dot11 : programacion en python para pentesters wi-fi / | 005.133 H477b 2009 Beginner´s guide to embedded C programming volume 2 : timers, interrupts, communication, displays and more / |
Incluye bibliografía e índice.
This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.-- Provided by Publisher.
No hay comentarios en este titulo.