Imagen de portada de Amazon
Imagen de Amazon.com

Computer vision : models, learning, and inference / Simon J.D. Prince.

Por: Tipo de material: TextoTextoEditor: Cambridge : Cambridge University Press, 2012, c2017Descripción: xviii, 579 páginas : ilustracionesTipo de contenido:
  • texto
Tipo de medio:
  • no mediado
Tipo de soporte:
  • volumen
ISBN:
  • 1107011795
  • 9781107011793
Tema(s): Clasificación CDD:
  • 006.37 P954c 2017
Contenidos:
Machine generated contents note: Part I. Probability: 1. Introduction to probability; 2. Common probability distributions; 3. Fitting probability models; 4. The normal distribution; Part II. Machine Learning for Machine Vision: 5. Learning and inference in vision; 6. Modeling complex data densities; 7. Regression models; 8. Classification models; Part III. Connecting Local Models: 9. Graphical models; 10. Models for chains and trees; 11. Models for grids; Part IV. Preprocessing: 12. Image preprocessing and feature extraction; Part V. Models for Geometry: 13. The pinhole camera; 14. Models for transformations; 15. Multiple cameras; Part VI. Models for Vision: 16. Models for style and identity; 17. Temporal models; 18. Models for visual words; Part VII. Appendices: A. Optimization; B. Linear algebra; C. Algorithms.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Total de reservas: 0

Varían los años de reimpresión

Incluye bibliografía

Machine generated contents note: Part I. Probability: 1. Introduction to probability; 2. Common probability distributions; 3. Fitting probability models; 4. The normal distribution; Part II. Machine Learning for Machine Vision: 5. Learning and inference in vision; 6. Modeling complex data densities; 7. Regression models; 8. Classification models; Part III. Connecting Local Models: 9. Graphical models; 10. Models for chains and trees; 11. Models for grids; Part IV. Preprocessing: 12. Image preprocessing and feature extraction; Part V. Models for Geometry: 13. The pinhole camera; 14. Models for transformations; 15. Multiple cameras; Part VI. Models for Vision: 16. Models for style and identity; 17. Temporal models; 18. Models for visual words; Part VII. Appendices: A. Optimization; B. Linear algebra; C. Algorithms.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha