Imagen de portada de Amazon
Imagen de Amazon.com

Introductory statistical inference / Nitis Mukhopadhyay.

Por: Tipo de material: TextoTextoSeries Statistics, textbooks and monographs ; v. 187Editor: Boca Raton : Chapman & Hall/CRC, 2006Descripción: xviii, 280 páginas : ilustracionesTipo de contenido:
  • texto
Tipo de medio:
  • no mediado
Tipo de soporte:
  • volumen
ISBN:
  • 1574446134
  • 9781574446135
Tema(s): Clasificación CDD:
  • 519.5 M953i 2006
Resumen: Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura topográfica Estado Notas Fecha de vencimiento Código de barras Reserva de ítems
Libro Biblioteca Central Colección General 519.5 M953i 2006 (Navegar estantería(Abre debajo)) Disponible GEN 33409002662702
Total de reservas: 0

Incluye bibliografía.

Introductory Statistical Inference develops the concepts and intricacies of statistical inference. With a review of probability concepts, this book discusses topics such as sufficiency, ancillarity, point estimation, minimum variance estimation, confidence intervals, multiple comparisons, and large-sample inference. It introduces techniques of two-stage sampling, fitting a straight line to data, tests of hypotheses, nonparametric methods, and the bootstrap method. It also features worked examples of statistical principles as well as exercises with hints. This text is suited for courses in probability and statistical inference at the upper-level undergraduate and graduate levels.

No hay comentarios en este titulo.

para colocar un comentario.

Con tecnología Koha